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Abstract

Objective:

To compare healthcare resource utilization (HRU) and clinical decision-making for elderly patients based on

cytochrome P450 (CYP) pharmacogenetic testing and the use of a comprehensive medication management

clinical decision support tool (CDST), to a cohort of similar non-tested patients.

Methods:

An observational study compared a prospective cohort of patients�65 years subjected to pharmacogenetic

testing to a propensity score (PS) matched historical cohort of untested patients in a claims database.

Patients had a prescribed medication or dose change of at least one of 61 oral drugs or combinations of�3

drugs at enrollment. Four-month HRU outcomes examined included hospitalizations, emergency department

(ED) and outpatient visits and provider acceptance of test recommendations. Costs were estimated using

national data sources.

Results:

There were 205 tested patients PS matched to 820 untested patients. Hospitalization rate was 9.8% in the

tested group vs 16.1% in the untested group (RR¼ 0.61, 95% CI¼ 0.39–0.95, p¼ 0.027), ED visit rate

was 4.4% in the tested group vs 15.4% in the untested group (RR¼ 0.29, 95% CI¼ 0.15–0.55,

p¼ 0.0002) and outpatient visit rate was 71.7% in the tested group vs 36.5% in the untested group

(RR¼ 1.97, 95% CI¼ 1.74–2.23, p50.0001). The rate of overall HRU was 72.2% in the tested group vs

49.0% in the untested group (RR¼ 1.47, 95% CI¼ 1.32–1.64, p50.0001). Potential cost savings were

estimated at $218 (mean) in the tested group. The provider majority (95%) considered the test helpful and

46% followed CDST provided recommendations.

Conclusion:

Patients CYP DNA tested and treated according to the personalized prescribing system had a significant

decrease in hospitalizations and emergency department visits, resulting in potential cost savings. Providers

had a high satisfaction rate with the clinical utility of the system and followed recommendations when

appropriate.

Background

Pharmacogenetic testing is available to guide prescription drug treatment deci-
sions, such as which drug or dose to use for specific patients based on their
genotype. Testing is increasingly becoming the new standard of care for a variety
of drugs used to treat different disease states. The Clinical Pharmacogenetic
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Implementation Consortium (CPIC)1 has published 35
Dosing Guidelines which provide guidance for clinicians
when genotype information is available. The FDA
required labeling of clopidogrel (Plavix�) contains a
boxed warning describing the role of ‘loss of function vari-
ants’ in the genes coding for cytochrome P450 (CYP2C19)
that reduce drug activation and corresponding anti-plate-
let activity2. CPIC guidelines for CYP2C19 provide guid-
ance on prescribing of P2Y12 antagonists based on the
results of CYP2C19 testing, if available, for acute coronary
syndrome patients undergoing percutaneous interven-
tion3. Similar examples for common medications with
CPIC genotype guided prescribing include tricyclic anti-
depressants, selective serotonin reuptake inhibitors, and
simvastatin4–6. On a broader scale, pharmacogenetic test-
ing for CYPs has the ability to maximize drug treatment
effectiveness while reducing risk of adverse effects because
the polymorphic CYPs metabolize a majority of the most
commonly prescribed medications7. In addition, CYP
genotypes determine decreased or increased metabolism
activity in the majority of patients8.

Knowledge of CYP genotypes and interactions provides
clinically useful information for optimizing polypharmacy
regimens for chronically ill, multi-morbid patients7,9.

Polypharmacy carries a high risk of adverse drug
events10,11 (ADE) as a result of drug–drug interactions
(DDI) which are routinely assessed in clinical practice;
and drug–gene (DGI) and drug–drug–gene interactions
(DDGI), which are not routinely assessed. A recent
study of cumulative interaction risk showed that DGIs
and DDGIs comprise 15% and 19% of significant inter-
action risk12, with the remaining 66% being binary and
multi-drug DDIs. According to the FDA, DGIs between
genetically poor drug metabolizing enzymes (DME) and
their substrate drugs produce drug level changes equivalent
to the most extreme change a strong inhibitor of that
enzyme would produce13. An example of a DDGI is a
patient with a loss of function allele (DGI) affecting the
metabolism of one of the drugs they are taking and then
adding a second concomitant CYP inhibiting drug. These
cumulative interactions can phenoconvert patients from
normal or intermediate to poor metabolizers of affected
drugs and are especially important because of the occur-
rence of intermediate metabolizers of the most important
CYPs in approximately one-third of patients14. As a result,
DGIs and DDGIs are generally under-recognized and their
importance and impact under-estimated in clinical prac-
tice. This problem is particularly acute in elderly patients
subjected to polypharmacy and leads to a higher risk of
adverse events, such as overdose toxicity and prescription
drug-treatment failure15. These added risks likely result in
higher healthcare resource utilization (HRU) and overall
costs. One way to reduce the adverse impacts of polyphar-
macy on increased HRU is to identify DDIs, DGIs, and
DDGIs, calculate their cumulative effects, and modify drug

regimens accordingly. The clinical decision support tool
(CDST) used in this study considers cumulative drug and
gene interactions16,17 predicting the magnitude of drug
level increase or decrease that is often greater than any
single interaction. Currently, there is limited information
on the clinical utility of pharmacogenetic testing and the
extent to which physicians act on the results of such
tests18,19.

This paper reports the interim-analysis of a prospective
registry study comparing HRU among patients in the
YouScript IMPACT (Improving Medication Protocols
and Abating Cost of Treatment) registry who were
tested to determine their genetics-based CYP metabolizer
status, to a historical cohort of untested patients at
4-month follow-up. The prospective registry collected
information about elderly patients at risk for deleterious
medication interactions who were tested for pharmacogen-
etics followed by development of their cumulative DDI,
DGI, and DDGI risk profiles by CDST based on their
medication regimens. The personalized prescribing
CDST’s system that was applied in the prospective arm
of the study20 includes use of genetic test results for vari-
ants of cytochrome P450s: CYP2D6, CYP2C9, CYP2C19,
CYP3A4, and CYP3A5, and warfarin receptor gene
VKORC1, combined with known drug–drug inter-
actions12. Recommendations to prescribers by specialized
pharmacists using the CDST supported medication
management decisions. We then estimated the potential
financial impact of testing using national standard costs for
hospitalizations, emergency department (ED, and out-
patient visits. The study also assessed prescriber’s attitudes
and use of the CDST in supporting clinical decisions.

Methods

All patients included in the tested group provided
informed consent to participate in the study. The prospect-
ive registry and the study protocol were reviewed and
approved by Western Institutional Review Board (IRB)
and the retrospective analysis for the historical control
was reviewed and approved by the University of Utah IRB.

Study design

This was an observational cohort study that compared
HRU in patients prospectively tested with the
YouScript� system (tested group) at three clinical sites
specializing in cardiology, primary care, and internal medi-
cine matched to a historical cohort of patients that had not
undergone pharmacogenetic testing (untested group)
identified in the Medical Outcomes Research for
Effectiveness and Economics (MORE2) Registry, a com-
mercially available administrative claims database. The
study period was October 20, 2014 to June 9, 2015
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(tested group) and July 1, 2012 to December 31, 2013
(untested group). Additional information on the
YouScript system is provided in Appendix B.

Intervention

Tested group
Buccal samples were obtained from eligible patients for
determination of genotype and shipped to Genelex
Corporation (Seattle, WA). Genelex is accredited by the
College of American Pathologists (CAP 1073709); certi-
fied under the Clinical Laboratory Improvement
Amendments (CLIA No. 50D0980559); is Washington
State Medical Test Site No. MTS-60353885; New York
State Department of Health license no. PFI 8201; and is
licensed to perform high complexity clinical testing in all
US states. DNA extractions from buccal swabs were per-
formed using the MagJET genomic DNA extraction kit
from Thermo Fisher (Waltham, MA). Genotypes were
obtained using a laboratory-developed, multiplex PCR-
based tests followed by single base primer extension for
variant detection by mass spectrometry (MassArray
Analyzer 4 System, Agena Bioscience, San Diego, CA).
Variants tested include: CYP2D6: *2,*2A,*3-
*12,*14,*15,*17,*19,*20,*29,*35,*36,*41, gene dele-
tions and duplications. CYP2C19: *2-*10,*12,*17.
CYP2C9: *2-*6,*8,*11,*13,*15. CYP3A4: *22. CYP3A5:
*3. VKORC1: c.-1639G4A. The gene panel was decided
upon based on the high frequency of variation and the
variety of common medications that it effects. The CYPs
selected are the CYPs that have been shown to have a
consistent relationship with drug levels. The absence of
a positive test result for all variants listed results in the
assignment of a *1 wild type status. Patient phenotypes
and medication list were analyzed by YouScript and ver-
ified by a clinical pharmacist. YouScript is a CDST that
performs a comprehensive analysis of patient medication
regimen and their genetics using a proprietary algorithm
and a curated database of the primary literature to predict
changes in drug levels12. A report highlighting the cumu-
lative potential DDI, DGI, and DDGI risks with alterna-
tive drug treatment suggestions were curated by a clinical
pharmacist and the CDST and then sent to the provider
(see Appendix C for sample report). Interaction types in
order of decreasing severity were: ‘change’, ‘consider’,
‘monitor’, and ‘no change’. ‘Change’ interactions were
defined as most severe and generally denote contraindi-
cated drug combinations, duplicate therapy or literature
recommendations to avoid (or significantly modify) a par-
ticular drug–drug or drug–gene combination, e.g., clopido-
grel in CYP2C19 poor metabolizers. ‘Consider’
interactions were defined as recommendations to consider
changing or adjusting the dose of one or more of the cur-
rent medications based on documented clinical literature

and/or known pharmacokinetic properties. ‘Monitor’
interactions were defined as recommendations to monitor
closely for decreased effectiveness and/or adverse effects
specific to these drugs, as the patient may be at increased
risk. ‘No change’ interactions were when no change in
medications or dose were expected.

Data source

Untested group
The MORE2 Registry was used to identify patients for the
untested group. The MORE2 Registry is a large nationally
representative and de-identified administrative claims
database that includes longitudinal patient-level data
from a broad range of data sources across all payer types
(Commercial, Medicare, Managed Medicaid, and
Miscellaneous), geographic regions (98.2% of US counties
and Puerto Rico), healthcare settings (inpatient and out-
patient services), and provider specialties. The MORE2

data warehouse contains data pertaining to more than
9.7 billion medical events for more than 123 million mem-
bers, 769,000 physicians, and 261,000 clinical facilities.
Patient-level data includes age, gender, race or ethnicity,
and comprehensive information on disease diagnoses,
chronic conditions, and medical and pharmacy use21.

Study population

Untested group
The untested group consisted of patients �65 years who
were continuously enrolled in the MORE2 Registry
between January 1, 2012 and December 31, 2013, and
had a first claim or change in dose for one or more oral
forms of 55 single ingredient and six medication combin-
ations between July 1, 2012 and March 31, 2013 (Table 1).
The listed medications were chosen based on the potential
for significant DGI risk identified by in vivo pharmacoki-
netic or pharmacodynamic evidence, by FDA label, or
dosing guidance such as available from CPIC1. The date
of the first claim or dose change was assigned as the index
date. In addition, patients treated with three or more medi-
cations10 including at least one from the list in Table 1 on
index date were included to further mimic the prospective
cohort. Table 1 lists the drugs deemed high-risk that were
considered in the inclusion criteria for both the tested and
untested groups.

Tested group
This group only included patients who were aged �65
years at the time of study enrollment (index date) and
initiated therapy or had a dose change for at least one
oral medication from Table 1 within 120 days prior
to study enrollment, and were receiving three or more
medications, including at least one from Table 1.
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Exclusion criteria were similar for the tested and
untested groups and included patients who previously
had pharmacogenetic testing (CPT codes 81225, 81226,
81227); a diagnosis of current malabsorption syndrome
(ICD-9 codes 579.0, 579.3, 579.8, and 579.9); currently
hospitalized; receiving treatment or diagnosed with cancer
(140.x–209.x and 235.0x–239.x); current diagnosis of
malnourishment (263.x); a history of organ transplant;
or receiving IV antibiotics or immunosuppressant medica-
tions. Exclusion criteria were assessed prior to enrollment.
In the tested group, no subjects had cancer or a diagnosis
of malabsorption. To make the historical control compar-
able, those who had cancer or malabsorption were
excluded.

Study outcomes

The primary outcome was HRU at 4 months post-
enrollment. HRU included inpatient (hospitalization),
outpatient (physician office) services, and ED visits. The
secondary outcome was provider’s perception of clinical
utility of pharmacogenetic testing and the YouScript
CDST in supporting prescription drug treatment decisions.
The potential cost impact of testing was evaluated by
applying standardized costs from national sources to the
different rates of resources used by the tested and untested
groups.

Assessing HRU
Untested group
The number and rate of patients with an event (hospital-
ization, ED visit, or outpatient visit) and mean number of

events were calculated as documented in the MORE2

Registry. Hospitalizations were identified using claims
which had at least one hospital revenue code or associated
CPT-4 codes (99221–99223, 99231–99233, 99238, 99239,
99251–99255, 99291) and at least one CMS bill type code
(011X, 012X, 041X, 084X)22, all claims (contained within,
overlap, consecutive days, or transfers) into one claim seg-
ment. The earliest claim date was defined as the admission
date and the last claim date as the discharge date. ED visits
were defined based on the ED revenue codes and CPT-4
codes (99281–99285). Outpatient visits were based on
outpatient revenue codes and CPT-4 codes (99201–
99205, 99211–99215, 99241–99245).

Tested group
Clinical data were obtained by abstracting data from
patient medical records and test reports, querying patients,
and surveying providers. Data were entered into electronic
Case Report Forms.

Estimating HRU costs
Costs were estimated using values reported by the National
Center for Health Statistics (NCHS), Medical
Expenditure Panel Survey (MEPS)23, and Healthcare
Cost and Utilization Project (HCUP)24. The 2012
MEPS data was used to determine the annual cost of a
hospitalization, ED visit, and outpatient visit for patients
�65 years. The MEPS reported a median annual hospital-
ization cost as $12,996 ($19,604 mean), median annual ED
visit cost as $684 ($1285 mean)23, and a median annual
office visit cost as $1006 ($2278 mean)23. For this study,
the MEPS reported hospitalization and ED visit costs were

Table 1. High-risk CYP450 medications and the major CYP450 genetic variants affecting metabolism of these medications.

Generic (CYP450) Generic (CYP450) Generic (CYP450)

Amitriptyline (CYP2D6, CYP2C19) Fluoxetine (CYP2D6, CYP2C19) Pimozide (CYP2D6)
Aripiprazole (CYP2D6) Flurbiprofen (CYP2C9) Piroxicam (CYP2C9)
Atomoxetine (CYP2D6) Fluvoxamine (CYP2D6) Proguanil (CYP2C19)
Carvedilol (CYP2D6) Haloperidol (CYP2D6) Propafenone (CYP2D6)
Celecoxib (CYP2C9) Hydrocodone (CYP2D6) Propranolol (CYP2D6)
Citalopram (CYP2C19) Ibuprofen (CYP2C9) Risperidone (CYP2D6)
Clobazam (CYP2C19) Iloperidone (CYP2D6) Sertraline (CYP2C19)
Clomipramine (CYP2D6) Imipramine (CYP2D6, CYP2C19) Tetrabenazine (CYP2D6)
Clopidogrel (CYP2C19) Indomethacin (CYP2C9) Thioridazine (CYP2D6)
Clozapine (CYP2D6) Meloxicam (CYP2C9) Timolol (CYP2D6)
Codeine (CYP2D6) Metoprolol (CYP2D6) Tolterodine (CYP2D6)
Desipramine (CYP2D6) Mexiletine (CYP2D6) Torsemide (CYP2C9)
Dextromethorphan (CYP2D6) Nortriptyline (CYP2D6) Tramadol (CYP2D6)
Diazepam (CYP2C19) Omeprazole (CYP2C19) Trimipramine (CYP2D6)
Doxepin (CYP2D6, CYP2C19) Oxycodone (CYP2D6) Venlafaxine (CYP2D6
Escitalopram (CYP2C19) Paroxetine (CYP2D6) Voriconazole (CYP2C19)
Esomeprazole (CYP2C19) Perphenazine (CYP2D6) Vortioxetine (CYP2D6)
Fesoterodine (CYP2D6) Phenobarbital (CYP2C9, CYP2C19) Chlorpheniramine/hydrocodone (CYP2D6)
Flecainide (CYP2D6) Phenytoin (CYP2C9, CYP2C19) Acetaminophen/codeine (CYP2D6)
Acetaminophen/oxycodone (CYP2D6) Acetaminophen/tramadol (CYP2D6)
acetaminophen/hydrocodone (CYP2D6) Dextromethorphan/guaifenesin (CYP2D6)
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assumed to be for a single event. However, the MEPS
reported annual cost for office visits was assumed to be
for multiple visits. Therefore, to estimate the cost of a
single office visit, the annual office visit cost was divided
by 6.7, which was the rate of annual outpatient visits
reported in National Ambulatory Medical Care Survey
2010 Summary Tables25, providing a median rate of
$150 (mean rate¼ $340) per outpatient visit used for
this calculation.

Statistical analysis

Treatment group characteristics were calculated and com-
pared using descriptive statistics. A propensity score (PS)
matching technique was used26,27 to address confounding
and selection bias due to the different sample sizes. The PS
is a measure of the probability of treatment assignment
(being in the tested group) that was conditional on
observed baseline covariates. Matching by PS addresses
balance in the tested group for baseline covariates that
may influence both treatment selection and treatment
outcomes. The covariates used for matching included
patient baseline age, gender, D’Hoore-Charlson comorbid-
ity index score (CCI)28, for specific morbidities including
congestive heart failure, chronic obstructive pulmonary
disease, cerebrovascular disease, diabetes, diabetes with
complications, dementia, hemiplegia or paraplegia, mild
liver disease, myocardial infarction, peripheral vascular
disease, moderate or severe renal disease, rheumatologic
disease, moderate or severe liver disease, and peptic ulcer
disease. In addition, the matching process also controlled
for medications listed in Table 1. Race and insurance type
were not used in PS matching due to the dominance of
white patients and lack of insurance information in the
tested group. The ‘nearest’ neighbor-matching algorithm
was used to ensure that tested patients would have four
matched untested counterparts.

Results

A total of 82,073 untested patients from the Inovalon
MORE2 database were compared to the 205 tested patients
(Figure 1) to obtain the 820 untested patients used as PS
matched controls.

Table 2 reports patient demographics for tested and
untested groups before and after PS matching. Before
matching, the tested cohort was older, had more male
patients and lower CCI scores vs the untested group.
Statistically significant differences were seen among cer-
tain comorbidities (higher rates of congestive heart failure,
diabetes and its complications, and myocardial infarction;
and lower rates of diabetes in the untested group compared
to the tested group). Medication use at baseline was higher
for the tested group for the following drugs: carvedilol,

celecoxib, citalopram, clopidogrel, diazepam, escitalo-
pram, hydrocodone, meloxicam, metoprolol, omeprazole,
paroxetine, sertraline, and venlafaxine. After PS match-
ing, all statistically significant differences reported
before matching were balanced between the two groups
determined by an absolute standardized difference of less
than 0.1 (Figure 2). The standardized differences before
matching (stars) had wider distribution compared
to after matching (dots), indicating narrower variable
distribution resulting from the matching process.

Table 3 compares HRU by testing status; Overall HRU
was observed in 72.2% of patients in the tested group vs
49.0% of patients in the untested group (RR¼ 1.47, 95%
CI¼ 1.32–1.64, p50.0001); hospitalization rate was 9.8%
in the tested group vs 16.1% in the untested group
(RR¼ 0.61, 95% CI¼ 0.39–0.95, p¼ 0.027); ED visits
were 4.4% in the tested group vs 15.4% in the untested
group (RR¼ 0.29, 95% CI¼ 0.15–0.55, p¼ 0.0002); and
outpatient visits were 71.7% in the tested group vs 36.5%
in the untested group (RR¼ 1.97, 95% CI¼ 1.74–2.23,
p50.0001).

The mean number of total HRU was 2.2 in the tested
group vs 2.7 in the untested group (RR¼ 0.82, 95%
CI¼ 0.66–1.02, p¼ 0.0751). Mean number of hospitaliza-
tions was 0.1 for the tested group and 0.5 for the untested
group (RR¼ 0.25, 95% CI¼ 0.15–0.42, p50.0001); how-
ever, hospitalization in the untested group also included
long-term care rehabilitation. The mean number of out-
patient visits were 2.0 for the tested group and 1.9 for
the untested group (RR¼ 1.03, 95% CI¼ 0.83–1.28,
p¼ 0.7814); and the mean number of ED visits were 0.1
for the tested group and 0.2 for the untested group
(RR¼ 0.23, 95% CI¼ 0.11–0.46, p50.0001).

Table 4 represents the estimated cost implications of
genetic testing. In the untested matched cohort, 13 more
patients had a hospitalization than in the tested group
during the 4-month follow-up period. At $12,992
median cost (mean¼ $19,604) per hospitalization in the
elderly according to the MEPS report23, the difference in
the hospitalization cost was $168,896 ($254,852 using
mean cost). For ED visits there was a differential excess
of 23 patients in the untested group, at a median cost of
$684 per visit (mean¼ $1285)23 for a total of $15,390 dif-
ference in cost ($28,913 using mean cost). At the same
time, the total number of outpatient visits in the tested
group increased by 152, with a median cost estimate of
$150 per visit (mean¼ $340)25, adding $22,819 in costs
($51,672 using mean cost). When all components of HRU
are considered, $788 of the list price of $914 for the phar-
macogenetic test (2015 CMS Clinical Laboratory Fee
Schedule) is offset by HRU avoided due to testing.
Using mean costs instead of the median cost yields a cost
reduction of $1132 from HRUs avoided in the tested group
and a net savings of $218 per patient, including the cost of
the test.
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Table 5 reports physician attitudes to the recommenda-
tions provided to them as a result of testing and included
‘change’, ‘consider’, or ‘monitor’. On average there were
approximately two recommendations per patient during
the 4-month trial due to multiple recommendations for
some patients. For the 205 patients in the tested group, a
total of 381 recommendations were made for prescribed
medications listed in Table 1. The percentage of phys-
icians following these recommendations varied from 43%
in the ‘change’ category to 83% for ‘monitor’; and, overall,
the physicians followed 46% of the test recommendations.
Reasons for physicians not following recommendations
included patient tolerance (49%) and already monitoring
(41%). According to Table 6, more than 95% of
physicians considered YouScript helpful for clinical deci-
sion-making, mainly because it identified previously
unrecognized drug–gene or drug–drug interactions.

Discussion

Assessing the clinical and economic value of pharmacoge-
netic testing for reimbursement has been described as
challenging because research methods applied to trad-
itional medicines have to adapt in order to evaluate
the scope and complexity of personalized medicine29.
Yet the requirement of clinical evidence and value is
beginning to favor reimbursement for testing30.

The focus of our study was to assess the impact on HRU
of pharmacogenetic testing of elderly polypharmacy
patients exposed to one of the 55 drugs, and the six most
common combinations thereof, that have been known to
have drug–gene interactions which may result in adverse
clinical consequences. In order to identify a population
that is likely to have a high frequency of potential inter-
actions with the CYPs, we only included patients taking

Tested Group from registry
(n = 216)

Exclude cancer pa�ents

Tested group
(n = 205)

Untested group
(n = 82,073)

Propensity Score Matching

Analysis Cohort (n = 1,025)

Tested group
(n = 205)

Untested matched group
(n = 820)

Any claim for ≥ 1 drug(s) from predefined drug list (Jul 1, 2012–Mar 31, 2013)
(Pa�ent Iden�fica�on Period)

N = 461,939 (39.0% of 1,185,239)

Unique pa�ents in the Inovalon MORE2 Registry® (Jan 1, 2012–Dec 31, 2013)
N = 41,846,662 (100%)

Age ≥ 65 years with con�nuous enrollment (Jan 1, 2012–Dec 31, 2013)

Total pa�ents taking ≥ 3 prescrip�on drugs with ≥1 drug from predefined drug
list (Table 1)

Exclusions
•  Pa�ents previously tested for CYPP450
• Pa�ents with diagnosis of current malabsorp�on syndrome
 or a history of organ transplanta�on during pre-index period
• Pa�ents with current hospitaliza�on, receiving IV an�bio�cs,
 taking immunosuppressant drugs, treatment of  cancer,
 invasive solid tumors or hematological malignancies during
    pre-index period
• Pa�ents determined to be malnourished on index date

Untested Group from Inovalon MORE2

N = 99,460 (25.9% of 384,020)

N = 1,185,239

Figure 1. Patient selection flow chart.
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Figure 2. Distribution of standardized differences before and after propensity score matching.

Table 3. Healthcare resource utilization in the study population during 4-month follow-up period.

Outcome Adjusted (propensity score matched)

Tested (n¼ 205) Untested (n¼ 820) IRR or RR 95% CI p-value

Hospitalization
Patients having, n (%) 20 (9.8%) 132 (16.1%) 0.61 0.39–0.95 0.0273
Number of hospitalizations, Mean (SD) 0.1 (0.4) 0.5 (1.6) 0.25 0.15–0.42 50.0001

Outpatient visits
Patients having, n (%) 147 (71.7%) 299 (36.5%) 1.97 1.74–2.23 50.0001
Number of outpatient visits, Mean (SD) 2.0 (2.6) 1.9 (3.7) 1.03 0.83–1.28 0.7814

ED visits
Patients having, n (%) 9 (4.4%) 126 (15.4%) 0.29 0.15–0.55 0.0002
Number of ED visits, Mean (SD) 0.1 (0.3) 0.2 (0.7) 0.23 0.11–0.46 50.0001

Total HRU
Patients having, n (%) 148 (72.2%) 402 (49.0%) 1.47 1.32–1.64 50.0001
Number of HRU, Mean (SD) 2.2 (2.9) 2.7 (4.5) 0.82 0.66–1.02 0.0751

SD, standard deviation; IRR, Incident rate ratio from Poisson regression models; RR, Relative risk from Poisson regression models with robust error variance.
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three or more medications. Analysis of the 205 tested sub-
jects showed a 47% increase in overall HRU, an �40%
decrease in number of hospitalized patients, and a 70%
reduction in ED visits compared to the matched historical
controls (number of unique patients having the event with
some patients having multiple events but only counted
once). The overall HRU increase was due to an increase
in outpatient visits, most likely driven by the increased
need for changes in therapy regimens based on test results.
However, analysis of the mean events (mean number of
events among the total patient cohort) showed no signifi-
cant difference in outpatient visits and a non-significant
18% decrease in total HRU, while showing a greater than
75% decrease in inpatient hospitalizations and a 77%
decrease in ED visits.

Our hypothetical costs estimates, based on median
national data, predicts a saving of $788 per patient,
which offsets most of the test cost, resulting in the health-
care system paying a net of $126 or 14% of the retail cost of
the test estimated at $914. When mean national data were
used, the hypothetical model predicts a $1132 saving,
which completely offsets the cost of the test, resulting in
a net savings of $218 per patient. Whether median or mean
costs are used, the model suggests that the cost of the test is
nearly or completely offset by savings resulting from
decreased healthcare resource utilization, providing evi-
dence for the robustness of the model.

Since follow-up was limited to 4-months, the potential
cost savings would be expected to increase over time given
the one-time expense of testing. A recently conducted
cost-effectiveness analysis considered a one-time genetic
test to avoid lifetime adverse drug reactions31. The
impact on quality-of-life of decreased hospitalization
days was the effectiveness measure and an incremental
cost-effectiveness ratio of $53,680 per additional quality
adjusted life year (QALY) was determined, well within
guidelines in countries where this measure is routinely
used for reimbursement decisions.

The role of using pharmacogenetic tests as clinical sup-
port tools has been previously reported. A study by Swen
et al.32 developed guidelines guiding antidepressant dosing
based on pharmacogenetic testing results. Another study
reported how pharmacogenetic information can be used to
select the ideal non-steroidal anti-inflammatory drug,
and potential benefits associated with this practice33.
Pharmacogenetic testing information can also affect
patient safety19 and drug-related hypersensitivity reac-
tions34. Our findings are consistent with evidence to
date that has focused on assessing the potential costs sav-
ings and adverse events avoided by using pharmacogenetic
testing19,32–34. A cost analysis done by Johnson et al.35

demonstrated potential savings of $222,426–$444,852 if
CYP2C19 genotyping shifted 10% or 20% of clopidogrel
patients to anti-platelet therapy not affected by a lack of
activation within a theoretical cohort of 1000 patients.Ta
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A more recent study by Winner et al.36 demonstrated sig-
nificant cost savings for pharmacogenetic-guided therapy
in psychiatric patients. Overall, those that were tested
incurred $1036 lower medication costs in 1 year, and,
specifically, in those where test recommendations were
followed, the savings increased to $2775 per year36.

Alterations in drug levels can lead to increased ED
visits and hospital admissions and readmissions due to
adverse events or diminished treatment response. ADEs
account for more than 700,000 annual ED visits for
Medicare patients37, and 16.6% of hospitalizations in the
elderly38. Similarly 2–8% of hospital re-admissions for
Medicare patients occur due to ADEs, resulting in extre-
mely high and potentially preventable costs39. Adverse
drug events leading to ED visits are also an important
cause of morbidity, particularly among patients �65
years40. A recent Canadian study41 discussed common
drugs that lead to ED visits and hospitalization due to
adverse events including opioids, non-steroidal inflamma-
tory drugs, and anticoagulants, all affected by polymorphic
DMEs. Colleagues at Vanderbilt have estimated that 383
adverse events could have been avoided within 52,942
medical home patients, exposed to medications similar
to those in our study, and with known outcomes influenced
by variant alleles by pre-emptive genotyping7.

Another important component to consider is the effect
of pharmacogenetic testing on changing subsequent clin-
ical decisions42. Evidence supporting the clinical utility of

pharmacogenetic testing and its impact in clinical practice
is emerging in multiple disease states. For example, genetic
information improves diagnostic evaluation in patients
presenting with coronary artery disease symptoms43.
Another study reported better risk stratification when
incorporating pharmacogenetic information into treat-
ment decisions of patients with breast cancer which
allowed for patient-tailored therapy44. There is an
increased trend of adopting pharmacogenetic testing in
clinical practice; however, clinical utility and economic
value should be properly evaluated before widespread
adoption of this CDST45. As pharmacogenetic testing
becomes more pervasive, the demand for evidence of
improved outcomes due to testing will increase in order
for health plans to consider reimbursement46,47. In our
study, providers followed 46% of test recommendations
to modify patient medication regimens. Of the recommen-
dations not followed, patients were most commonly
described as tolerant to the drug (49%) or already being
monitored (41%). Provider satisfaction with the testing
system was also high. More than 95% of physicians con-
sidered YouScript helpful to clinical decision-making due
to the identification of previously unrecognized potentially
important medication interactions. A final aspect of gen-
etic profiling is the inherent future clinical utility of
having information on record that will contribute to the
development of future treatment plans and clinical
decisions42.

Table 5. Distribution of physicians following YouScript recommendations (n¼ 381)y.

Recommendation
severity

Followed
percentage

Followed Not followed Reason for not following the recommendation (n¼ 207)

Patient
tolerating

Monitoring
already

Drug
transition-temporary

Otherz

Change 43% 35 47 15 23 1 8
Consider 45% 129 158 87 60 1 10
Monitor 83% 10 2 0 2 0 0
Total 46% 174 207 102 85 2 18

yIf any type of interaction was reported, the incidence was considered a YouScript recommendation. The three types of interaction are drug–gene, drug–drug, and
drug–drug–gene interactions.
zOther category included: Doctor’s decision (10 patients), patient’s awareness (two patients), patient declined (two patients), patient taking medications as needed
(four patients).

Table 6. Distribution of YouScript helpfulness for clinical decision-making (n¼ 205).

Was YouScript helpful for clinical decision-making? Count Percentage

Yes, the patient’s drug regimen was changed as a result of YouScript testing 32 15.6
Yes, previously unrecognized drug–gene or drug–drug interactions were identified 138 67.3
Yes, YouScript Personalized Prescribing System was helpful because (Specify below) 25 12.2
No, I did not find YouScript Personalized Prescribing System helpful for clinical decision-making 7 3.4
Not reported 3 1.5
Total 205 100
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Strengths and limitations

In order to provide timely evidence of the impact of testing
vs a control group, patients were matched on key variables
via a propensity score methodology to a historical control
from a national administrative claims database. The large
number of historical controls allowed for close matching at
a four-to-one ratio of controls to test subjects. This mixed
method design allowed us to demonstrate the feasibility
of reduction in healthcare resources based on genetic pro-
filing. The results from this analysis can inform the design
of future studies, where direct comparisons in a unified
database can be made.

Our study has several important limitations. First,
despite an innovative method to overcome the challenge
of providing closely matched controls for our complex
polypharmacy test subjects, the use of an administrative
database for historical controls provided inherent poten-
tial bias. The subjects selected for the control group were
drawn from the most current data-set available to minim-
ize differences in practice changes over time. Propensity
score matching was conducted to minimize differences in
observed covariates between the two populations.
However, PS matching is unable to control for unobserved
factors that may affect the outcomes in our study. Race and
ethnicity were not included in the propensity score match-
ing, due to limited reporting in the claims data-set.
However, a recent report by Van Driest et al.48 noted
only a 5% difference in exposure to actionable variants
of drug metabolizing enzymes between African–
Americans and the general population (96 vs 91%).
Despite achieving balance between the groups after
matching, there are still expected differences in the preva-
lence of CYP alleles between major population groups,
which were unaccounted for in this analysis.

Second, the registry was based on only a 4-month
follow-up, thereby likely under-estimating longer-term
cost savings. At 4 months, the cost of genetic testing was
almost offset by the savings seen in reduced ED visits and
hospital admissions. From the historical control group,
both hospitalizations and ED visits nearly doubled from
3 months to 9 months. Extrapolation of the tested group
from 4 months out to 1 year to estimate the annual impact
would require 1 year follow-up data from tested patients.
If the ratio of hospital and emergency department reduc-
tions were accompanied by decreased outpatient visits
once drug adjustments were made, genetic testing would
most likely be cost savings within 1 year. Therefore,
the current cost model can be considered a conservative
estimate of the impact of CDST guided genetic testing
on HRU.

Third, the investigators were not able to distinguish
between inpatient visits and rehabilitation visits in mean
events. In order to avoid counting rehabilitation visits as

hospitalizations, the investigators used patient rates
instead of mean events for the cost estimates.

Fourth, only provider satisfaction with the genetic test-
ing results was assessed. The impact of the genetic testing
on patient behavior and patient–provider interactions
were not determined. A potential consequence of genetic
testing on patient behavior may result in greater medica-
tion adherence from knowing that adverse events are less
likely and that the medication is more likely to achieve the
intended results, which may reduce unnecessary health
resource utilization. Further, genetic testing may have
facilitated discussions between the patient and provider
regarding the purpose of the test and education about
the medications, leading to increased patient–provider
interactions.

Finally, the hypothesis of the benefit of CDST guided
genetic testing is, in part, predicated upon the avoidance
of adverse drug events. Limited ADEs were reported in
the intervention group and ADEs in general are under-
reported and difficult to identify in an administrative
claims database and, thus, we were not able to link the
cause of increased HRU in this study. Associations
between recommendations followed by physicians and
patients were not made at the individual level, because
an individual physician may follow some recommenda-
tions but not others. Also, the prospective registry did
not have information on the number of patients
who refused to be enrolled in the study or those who
were ineligible for study inclusion.

Conclusions

This study has demonstrated that pharmacogenetic CYP
testing of the elderly exposed to polypharmacy, along with
appropriate clinical decision support tools, such
as YouScript, may provide valuable information to guide
prescription drug treatment, reduce hospitalization and ED
visits, and lower overall costs. The evidence in this study
should be further corroborated with randomized observa-
tional data in a unified data source to link these outcomes
to the impact of these interventions.
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Appendix B: Description of the YouScript
system

YouScript is a clinical decision support (CDS) algorithm
used to calculate the cumulative effects of multiple inter-
actions between prescription drugs, over the counter med-
ications, herbal preparations, and pharmacogenomics
(PGX) data when available. The CDS predicts area
under the curve (AUC) changing pharmacokinetic inter-
actions from known metabolic data such as the (Ki) of
DME inhibiting and inducing drugs and percentage meta-
bolism of drug substrates by affected enzymes. The phar-
macokinetic interactions considered by the algorithm
include alterations to absorption, distribution, metabo-
lism, and excretion. Metabolism and excretion include
phase 1 reactions by cytochrome P450s, esterases, and
others, phase 2 reactions considered include glucuronida-
tion and sulfation. Biochemical interference with trans-
porters such as the ATP-binding cassette and solute
carrier transporters are also taken into account. PGX
effects on pharmacokinetics include those caused by
CYP2D6, CYP2C9, CYP2C19 and many other DMEs.

A list of 2500 medications and other factors that affect
patient drug levels is available for query. Patient reports are
produced based on patient drug list by accessing a database
of 10,300 advisory notes that include links to the 18,000
professionally curated pharmacokinetics, pharmacody-
namics, and pharmacogenetics publications that form
the YouScript knowledge base. Reports identify patients
for whom genetic testing could produce clinically action-
able information, provide suggestions for the alteration of
drug regimens, and provide lists of alternative medications
by therapeutic class.

A more robust description of the algorithm is available
from the relevant US patents49,50. Drug dosage or hepatic
or kidney function are not currently taken into account by
the algorithm.
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Appendix C: Example of the personalized prescribing report generated by the YouScript
system
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